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On zero stiffness

Mark Schenk and Simon D Guest

Abstract

Zero-stiffness structures have the remarkable ability to undergo large elastic deformations without requiring external

work. Several equivalent descriptions exist, such as (i) continuous equilibrium, (ii) constant potential energy, (iii) neutral

stability and (iv) zero stiffness. Each perspective on zero stiffness provides different methods of analysis and design. This

paper reviews the concept of zero stiffness and categorises examples from the literature by the interpretation that best

describes their working principle. Lastly, a basic spring-to-spring balancer is analysed to demonstrate the equivalence of

the four different interpretations, and illustrate the different insights that each approach brings.
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Introduction

A fascinating combination of geometry, stiffness and
prestress enables zero-stiffness structures to deform
and maintain their deformed configuration without
any external work – in effect, these elastic structures
behave as mechanisms. This remarkable property
forms the topic of this paper. Paradoxically, there
exists a considerable body of work describing zero-
stiffness structures, while the concept of zero stiffness
is at the same time generally unknown. One of the
reasons is that examples of zero-stiffness structures
are found in disparate disciplines and go by various
monikers (e.g. in mechanical engineering they are
often referred to as statically balanced mechanisms).
As a result, the shared underlying mechanical prin-
ciples are seldom recognised.

There are several equivalent interpretations of the
concept of zero stiffness. The key property is the abil-
ity of an elastic structure to deform with zero stiffness,
where any change in configuration requires no exter-
nal work. These structures are thus said to be neu-
trally stable: at the cusp at stability and instability,
they can undergo large displacements for a constant
critical load or self-stress. Another interpretation is
that these structures are in continuous equilibrium
with an applied load over a finite range of motion.
Lastly, a zero-stiffness structure maintains a constant
potential energy, which is continuously redistributed
as the structure deforms, thus eliminating any pre-
ferred position under the applied load or self-stress.
Throughout this paper the term zero-stiffness

structures will be used as the most general description,
and while these elastic systems behave as mechanisms,
they will generally be referred to as structures.

Zero-stiffness structures can be more formally
defined by considering the total potential energy �
of an elastic structure under conservative loads. If
the geometric configuration of the structure is defined
by a vector of coordinates p with components pi, then
setting the derivatives of � @�=@pið Þ to zero provides
the equilibrium equations. The Hessian @2�=@pi@pj

� �
subsequently yields the stiffness equations for the
structure. By looking at the eigenvalues of the
Hessian matrix the stability of the structure can be
assessed.1,2 A structure is stable if all eigenvalues are
positive, unstable if there exists a negative eigenvalue,
and has a zero-stiffness deformation mode if the
Hessian is singular.

In general, a zero-stiffness mode will be infinitesi-
mal, and higher order strain and prestress effects will
ultimately determine the stability of the structure, as
illustrated in Figure 1. Despite the local nature of the
zero-stiffness behaviour, such quasi-zero-stiffness
structures may nonetheless be of use in engineering
applications such as vibration isolation. However, of
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primary interest to our discussion are cases where all
higher order derivatives of the potential energy are
also zero, and the structure therefore has a finite
zero-stiffness path. Barring any imperfections, friction
or material damping, these elastic structures can
deform over large displacements with zero stiffness.
This singular structural behaviour only exists for
very specific combinations of material stiffness, struc-
tural geometry and prestress.

It is important to note that in order to fully
describe the mechanical properties of zero-stiffness
structures, a geometrically non-linear analysis is
necessary to distinguish between infinitesimal and
large-displacement zero-stiffness modes. This is analo-
gous to the study of buckling, where only a postbuck-
ling analysis can provide information about the
structure’s ability to carry further loads.

Applications

In some aspects, zero-stiffness structures are a struc-
tural curiosity, as they cannot carry any further loads.
Nonetheless, zero stiffness has interesting practical
applications. Zero-stiffness structures can maintain
their deformed state without any plastic deformation,
and static balancing can be used to reduce the operat-
ing energy of mechanisms, as a quasi-static change of
position will require no effort. Furthermore, from an
academic point of view zero-stiffness structures are
singularities in structural theory, and their study
advances our understanding of structural mechanics.

The concept and application of zero stiffness is cer-
tainly not new: the first known academic description
dates from 1867 (Thomson and Tait’s Treatise on
Natural Philosophy was first published in 1867. In
this paper we shall refer to the 1883, 2nd edition,
which is more widely available. William Thomson is

generally better known as Lord Kelvin.),3 and the first
engineering example can be found in a 1901 patent.4

Many applications have since been proposed, and this
paper only provides a brief overview of the wide range
of possibilities. An important application of zero stiff-
ness is in the counterbalancing of a mass. The classic
example is the Anglepoise desk lamp, where the lamp
shade can be repositioned effortlessly.5 Other exam-
ples of counterbalancing can be found in drafting
tables,6 blackboards,7 instrument tables,8 computer
screens9 (e.g. the Apple G4 iMac), supports for indus-
trial pipes10,11 and rehabilitation aids.12 In robotics,
the use of static balancing enables manipulators to
become lighter and faster, as the weight of the links
no longer needs to be carried by the actuators.13,14

Constant force generators can also be found in
machine design applications.4,15,16 In recent years,
compliant mechanisms have gained increasing inter-
est; static balancing can significantly reduce the
required operating force17 by compensating for the
parasitic stiffness inherent in the flexible hinges.
Lastly, vibration isolation18–20 provides further appli-
cations for zero-stiffness structures, with as notable
examples the Steadicam21,22 and a gravity measure-
ment device.23

Scope and outline

This review aims to familiarise the reader with the
concept of zero-stiffness structures, by drawing
together examples from disparate fields and describ-
ing the mechanical principles that unite them.
Accordingly, the intention of this paper is to develop
an over-arching insight, rather than present an
in-depth review of individual research fields.

This paper is structured as follows. The next sec-
tion describes three illustrative, and purposefully

Figure 1. A ball lying on a curved surface illustrates the different stability conditions of a single-degree-of-freedom elastic structure.

As the potential energy of the ball is proportional to its vertical position, the shape of the surface is analogous to a potential energy

function � for an elastic structure. Consider small variations �q around the equilibrium state. Shown are configurations which are (a)

stable d2�=dq2 4 0
� �

, (b) unstable d2�=dq2 5 0
� �

and (c) neutrally stable d2�=dq2 ¼ 0
� �

. The examples shown in (d) are all locally

neutrally stable (i.e. the system has quasi-zero stiffness), but are ultimately either stable (d-i) or unstable (d-ii, d-iii).
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dissimilar, examples of zero-stiffness structures. Then,
we discuss four interpretations of zero stiffness, and
group examples from the literature accordingly. The
following section analyses the basic spring-to-spring
balancer from four perspectives; the example demon-
strates the equivalence of the different zero-stiffness
interpretations, but also illustrates that each approach
provides its own insights.

Three examples

In this section, we highlight three examples from the
literature. While at first glance these structures appear
dissimilar, they share the common feature of deform-
ing with zero stiffness.

Twisting rod

The first known description of a zero-stiffness elastic
structure was given by Thomson and Tait (§§ 621–626
of Ref.3). Take an initially straight rod with uniform
bending stiffness, and bend it arbitrarily (but elastic-
ally) along its length. In this deformed configuration,
any twisting of the rod along its centroidal axis
requires no torque, and thus has zero stiffness. The
explanation is immediately intuitive: there exists no
preferential bending axis and thus any twisted orien-
tation of the rod will have identical strain energy. An
example of this type of structure is shown in Figure 2.
When a thin straight rod is bent uniformly and its
ends are rigidly joined, the resulting prestressed ring
can be twisted along its axis with no stiffness (in prac-
tice, there will be some, negligible, stiffness due to
imperfections in the initial straightness of the rod).
In contrast, when an unstressed ring is twisted along

its axis, it deforms into a saddle shape. The Thomson
and Tait twisting rod is an elegant example of a struc-
ture with constant strain energy, where the elastic
stresses are continuously redistributed as it deforms
in its zero-stiffness mode.

Anglepoise lamp

The classic Anglepoise lamp exemplifies a category of
spring–linkage-based statically balanced mechanisms.
The spring-based balancing system enables effortless
positioning of the lamp shade.24 The original design
by Carwardine5 dates to the 1930s, but since then its
elegant mechanical design has remained effectively
unchanged, see Figure 3. In this type of statically
balanced mechanisms, the links are regarded as
freely hinged rigid bodies and the linear springs are
the only elastic components. Often these are zero-free-
length springs, which are pretensioned to the extent
that the spring has an effective zero rest length, and
the force is therefore proportional to the length of the
spring. (The necessary pretension can be achieved, e.g.
by twisting the wire prior to the coiling of the spring.)
The Anglepoise spring mechanism illustrates two
zero-stiffness interpretations: by generating a constant
upward force the weight of the lamp shade is continu-
ously balanced in all positions and a constant poten-
tial energy is maintained by redistributing energy
between the strain energy in the springs and the gravi-
tational potential energy of the lamp shade.

Neutrally stable cylindrical shells

Guest et al.25 describe a neutrally stable prestressed
shell, discovered serendipitously during work on

Figure 2. The structural response of a ring subject to an equal and opposite axial rotation at two diametrically opposed points

depends crucially on the presence of prestress. An unstressed ring (a) deforms into a saddle-shaped configuration, whereas a

prestressed ring (b), formed from an initially straight rod, twists effortlessly around its centroidal axis with zero stiffness. The

numerical simulations were performed using the finite element software ABAQUS 6.11. The ring and rod have a diameter of 200 mm

and 2 mm, respectively, and the axial rotation was �=4. The colours represent the Von Mises stress, with warmer colours indicating

higher values, illustrating the difference in stress distribution in the two cases.
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bistable cylindrical shell structures. These bistable
structures have two stable states, and can transition
between the two through elastic deformations.
The bistability can be achieved by imposing a
state of prestress in the shell by an initial plastic form-
ing process.26 Using a simple inextensional shell
deformation model,27 a particular prestress state for
the shell was found where the twisting deformation
requires no external energy, see Figure 4. Upon
closer inspection, a hidden symmetry was revealed,
with a parallel in the neutrally stable buckled state
of a bi-metallic disc. When such a disc is subjected
to a change in temperature, it will first develop a
spherical curvature due to the different thermal
expansion coefficients of the two layers, before

bifurcating into a cylindrical configuration.28 As the
orientation of the cylindrical axis is arbitrary, the
cylindrical shell can effortlessly be twisted into other
configurations with identical strain energy. The same
underlying mechanism operates in the redistribution
of the strain energy in the neutrally stable cylindrical
shell.

Design and analysis methods

The concept of zero stiffness can be described in vari-
ous manners: equivalent formulations are continuous
equilibrium, constant potential energy, neutral stability
and zero stiffness. However, different interpretations
will lead to different methods for the design and

Figure 3. Designed in 1934 by Carwardine, the three-spring design of the Anglepoise 1227 has become iconic: (a) the original patent

drawings,5 and (b) a modern Original 1227 reissued to celebrate its 75th anniversary. Image copyright, Anglepoise Ltd – Anglepoise� is

a registered trademark.

Figure 4. A neutrally stable cylindrical shell25 can be twisted from fully coiled to fully extended configuration and again to fully coiled

(clockwise from top-left) with zero stiffness. In all deformed configurations the shell can be wrapped around an underlying cylinder

with constant radius.
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analysis of zero-stiffness structures. In this section,
examples are drawn from a wide range of disparate
disciplines, and categorised by an interpretation that
best clarifies their working principle. Inevitably, the
boundaries between the categories are blurred.

Continuous equilibrium

A key approach to the design of zero-stiffness struc-
tures is to focus on the force and moment equilibrium
equations, and maintain continuous equilibrium
throughout the structure’s range of motion.

The driving application is the design of gravity
equilibrators, where the zero-stiffness structure pro-
vides a constant vertical force to counterbalance a
mass. A wealth of gravity balancing mechanisms can
be found in the patent literature; a full review is
beyond the scope of this paper, and we shall highlight
only key examples. Static balancing of a mass can
naturally be achieved through the use of counter-
weights. However, spring-based mechanisms are
often preferred for minimal increase in inertia, and
compactness of design. As the force of a regular
coiled spring is proportional to its elongation, a mech-
anical conversion is necessary to produce a constant
force at the end effector. This can be achieved through
appropriate mechanical linkages, or cams and other
curved surfaces.29

In linkage-based statically balanced mechanisms,
only the springs are considered to deform elastically
and the links are regarded as rigid. (A classic example
is the Anglepoise desk lamp discussed in the previous
section) Often a key component is the use of zero-free-
length springs.33,33 The spring is prestressed such that
the spring force is proportional to the length of the
spring, as opposed to its elongation, and thus has an
effective zero rest length. These springs greatly sim-
plify the design of statically balanced linkages, but are

seldom used, in practice, as accurate manufacturing is
difficult. Fortunately, their properties can straightfor-
wardly be emulated (or closely approximated) in prac-
tical implementations, for example, by using multiple
pulleys.32 The basic spring balancer, as shown in
Figure 5(a), forms the core of many statically
balanced mechanisms. Its design has been extended
by many authors, 5,15,32,34,35 and it can be recognised
in many engineering applications.

Another means of converting a linear spring to a
constant balancing force is the use of wrapping cams
or curved guides. Ostler and Zwick30 describe cam-
based balancers where moment equilibrium is pre-
served between the constant load and the varying
spring force, see Figure 5(b). More generally, curved
guides can be used to control the deformation of a
linear or torsional spring, and produce a desired
force output.9,31,36 The curve geometry can be gener-
ated using equilibrium36 or energy31 equations. Either
approach produces a differential equation for the
curve, which can be solved for a desired payload,
geometry, and spring stiffness.37 Recent developments
have resulted in the design of curve-based balancers
where adjustment to different payloads is possible
without redesign of the curve geometry.31 This is
achieved by using two sets of springs: the first is
coupled directly to the payload, and the vertical
force component of the second set is controlled by
the curved surface; together they produce a constant
upward force over the balancer’s range of motion, see
Figure 5(c). Adjusting the balancer to different pay-
loads is done by increasing the initial tension in the
first set of springs. An important advantage of the
curve and cam-based balancers is their compactness,
compared with linkage-based gravity equilibrators.

Instead of counterbalancing a constant (gravity)
load, mechanisms may also be designed to counter-
balance elastic forces, for instance, to counteract

Figure 5. Three gravity equilibrators: (a) basic linkage with a zero-free-length spring, (b) wrapping cam with a regular spring30 and

(c) curved guides with two sets of springs.31
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undesired forces, such as the elasticity in cosmetic
gloves for prosthetics or the parasitic stiffness in
compliant mechanisms. Another application is in
spring-to-spring balancers that enable energy-free
adjustability of gravity equilibrators to multiple pay-
loads.8,38 A classic spring-to-spring balancer is dis-
cussed in detail in a later section.

Constant potential energy

An intuitive interpretation of zero-stiffness structures
is the realisation that throughout their deformation a
constant total energy is maintained, and no preferred
configuration thus exists. In the zero-stiffness deform-
ation mode, the elastic strain energy is either redistrib-
uted within the structure, and/or exchanged with
potential energy in an external field (e.g. gravity or
magnetic39). The constant energy interpretation also
clarifies the necessity of a prestress or preload: energy
must first be introduced to the structure before it can
be redistributed in the zero-stiffness deformation
mode.

The constant energy approach has proven to be an
effective method to analyse and design zero-stiffness
structures. For example, Walsh et al.40 described the
perfect balancing of a two-degree-of-freedom balan-
cer with spatially arranged springs using potential
energy functions; approximately balanced spring-
linkage mechanisms can be designed by exploring
energy landscapes32,41 and the study of strain energy
contours for cylindrical shell deformations led to the
discovery of zero-stiffness shell structures.25,42 The
constant energy approach is also used for spring-
to-spring balancers, where mechanisms transfer
energy from one spring to the next. Barents et al.38

proposed several designs for spring-to-spring
balancers, where one spring is used to
counterbalance a payload, and the second is available
to store/release energy when the payload mass is
varied; this enables energy-free adjustment of a grav-
ity balancer.

In other structures, a constant potential energy is
maintained by ensuring a constant amount of material
deformation within the zero-stiffness mode. A classic
example is the Rolamite linear bearing,43 see Figure 6.
A flat blade spring is wrapped around two cylinders;
for any displaced configuration of the two rollers, the
deformed spring length (and thus stored strain energy)
remains constant, and the mechanism therefore has
no preferred position. The concept was extended to
a rolling hinge,44 and elegantly employed in a preload-
ing mechanism for a knife edge pivot (§ 10.2 of
Ref.16). A similar configuration was also proposed
as a mechanical model for lotus receptacles.45 Vehar
et al.46 described closed-loop tape-spring mechanisms
with multiple travelling elastic hinges. Despite the
non-linear and complex mechanics of the bending of
a tape spring,47 the constant strain energy in the
mechanisms can be recognised by the constant total

material deformation. Lastly, the Thomson and Tait3

zero-stiffness twisting ring, where any twisted config-
uration has identical strain energy, as described
previously.

In certain types of zero-stiffness structures, the
stored elastic energy is not constant, but the working
principle is nonetheless best understood by noting a
constant elastic deformation zone. Constant force
springs (also known as negator springs, p. 152 of
Ref.48) are unstressed in their coiled configuration.
The length of the transition zone between coiled and
straightened state is always constant, and any further
extension will therefore require no increase in force.
Similarly, propagating instabilities49 can be
regarded as zero-stiffness deformations. A classic
example is the inflation of a long thin balloon50:
after the initial inflation stage there exists a constant
deformation zone between the flat and inflated sec-
tion, and further inflation takes place at a nominally
constant pressure.

Neutral stability

In the stability of structures, buckling is said to occur
when a structure can no longer support a load and
undergoes a sudden large displacement. In effect, the
structure has zero stiffness in the buckling mode, and
one or more of the eigenvalues of the stiffness matrix
becomes zero.1 A classic small-displacement buckling
analysis, however, cannot determine whether the struc-
ture is ultimately stable, unstable or neutrally stable;
therefore, an analysis of the postbuckling bifurcation
paths is necessary.1,2 The neutrally stable postbuckling
approach to zero-stiffness structures has primarily been
studied within the context of structural mechanics.
However, the connection is increasingly recognised
and utilised in the field of mechanical engineering.51

Tarnai45 provides an elegant analysis of the neutral
stability of a rigid-linked pin-jointed structure under
an external load, as shown in Figure 7. By studying
analytical expressions for the first differential and the
Hessian of the potential energy function, it was shown
that there exists a transition from an unstable to a
stable symmetric bifurcation as the ratio k2=k1 is
increased. In between, for a specific combination of

Figure 6. In a Rolamite linear bearing a flat spring is wrapped

around two cylinders. For any displaced configuration of the

two rollers the total stored strain energy will remain constant;

the structure therefore has no preferred position and deforms

with zero stiffness. Image from Ref.43
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spring stiffnesses (k1k� 4k1k2 þ k2k ¼ 0), the struc-
ture is neutrally stable over a finite range of motion.
Tarnai includes a brief history of the analysis of this
zero-stiffness structure, which suggests it to be the
earliest known example of a neutrally stable post-
buckled structure. Gáspár52 and Hegedüs53 analysed
simplified versions of Tarnai’s structure, and provide
further examples. Steinboeck et al.54 studied the
imperfection sensitivity of postbuckling behaviour in
terms of symmetric, anti-symmetric and zero-stiffness
bifurcations, within the framework of Koiter’s initial
postbuckling analysis. An example zero-stiffness
structure was described, which showed that zero stiff-
ness does not necessarily lie at the boundary of imper-
fection sensitivity and insensitivity. Continued
work55–58 revealed further examples, and provides
necessary and sufficient conditions for neutrally
stable postbuckling behaviour.

While neutral stability in postbuckling has become
a subject of study in its own right, it may also eluci-
date the underlying mechanics of other zero-stiffness
structures. For example, the neutrally stable shell
structure described by Guest et al.25 was best under-
stood by means of the parallel with the postbuckling
behaviour of a bi-metallic disc subject to a change in
temperature28. This insight explained the critical level
of prestress for the neutrally stable behaviour, which
had previously been found empirically by studying
strain energy contours.

As a closing example, van Eijk59 described a zero-
stiffness platform supported on buckled blade springs.

The postbuckling behaviour, however, is stable and
the zero-stiffness displacements would thus be infini-
tesimal. Examples of such quasi-zero-stiffness struc-
tures can be found in precision engineering
applications.

Zero stiffness

Lastly, the stiffness equations of an elastic structure
can be analysed directly, in search of zero-stiffness
conditions. In essence, this is identical to the buckling
analysis discussed previously, where zero stiffness
identifies the point of buckling of the structure.
Nevertheless, many problems in structural mechanics
are formulated directly in terms of stiffness equations,
and a link to buckling is often non-obvious.

In general, stiffness formulations are in the form of
a linearised tangent stiffness matrix. Any singularities
in the stiffness matrix will therefore only reveal infini-
tesimal zero-stiffness modes, and further effort is
required to find conditions for a finite zero-stiffness
path. For example, this was done for zero-stiffness
tensegrity structures (i.e. prestressed pin-jointed
frameworks), by exploiting the specific nature of the
zero-stiffness deformations.60 For the zero-stiffness
tensegrity structures, the connection with stability
and critical load was revealed by Guest.61 When the
level of prestress in a tensegrity structure is increased,
the overall stiffness first increases, before dropping off
in certain deformation modes, reaching zero (when
making use of tension members with zero rest

Figure 7. The zero-stiffness elastic structure studied by Tarnai45; it will exhibit a neutrally stable postbuckling path (2) if the balancing

condition k1k� 4k1k2 þ k2k ¼ 0 is satisfied. For k1 ¼ k2 ¼ k=2, the critical buckling load is Pcr ¼ 2k1L.
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length) and eventually becoming negative. This illus-
trates that the zero-stiffness tensegrities are at the cusp
of stability and instability for a critical level of self-
stress; a small change in prestress would result in
either a stable or unstable structure. In practice, how-
ever, insensitivity to the precise level of prestress may
be provided by friction in the structure.62 It is import-
ant to note that the stiffness matrices must correctly
take into account any prestressing or preloading of
the structure, to be able to correctly identify zero-
stiffness modes. While stiffness matrices are tradition-
ally the tool of structural mechanics, they have been
adapted for use in the design of statically balanced
mechanisms.63

Alternatively, rather than looking for zero eigen-
values in the stiffness matrices, a zero-stiffness struc-
ture can be designed by explicitly combining
structures with a positive and negative stiffness.64,65

The necessary negative stiffness is often derived
from the postbuckling solution of a (multi-stable)
elastic structure.66 This technique is increasingly
used in the design of compliant mechanisms. Such
mechanisms rely on the elastic deformation of their
structural members for motion, thereby eliminating
friction and backlash. However, the elastic deform-
ations introduce a parasitic stiffness which impacts
the operating energy of the mechanism. By coupling
the compliant mechanism with a negative stiffness
component, the parasitic stiffness can be counterba-
lanced and the mechanism’s operating force is
reduced. The resulting zero-stiffness structures are

referred to as statically balanced compliant mechan-
isms.17,67 The structural behaviour of compliant
mechanisms is often strongly non-linear and matching
the opposing stiffness of two non-linear structures is
challenging; as a result, the zero-stiffness mode will
generally be imperfect, and restricted to a limited
range of motion. In order to avoid problems with
stress relaxation in prestressed structures, an initial
loading step can be used to introduce the negative
stiffness necessary for the zero-stiffness regime. The
results of the analysis of a simplified quasi-zero-
stiffness compliant mechanism are shown in
Figure 8. For designs with compliant hinges where
beam bending dominates, finite element analysis is
necessary to produce the force–displacement profiles
and optimise the mechanism geometry.65,67

In designing for zero stiffness, one can also study
the dynamic behaviour of the structure, and design
for a low (or zero) natural frequency. This approach
is used in the design of passive vibration isolation
systems. An extensive body of research is available,
and a detailed review by Ibrahim18 covers a wide
range of non-linear passive vibration isolators, includ-
ing mechanical structures such as postbuckled beams,
as well as magnetic quasi-zero-stiffness systems.20 For
most vibration isolation applications, the use of a
quasi-zero-stiffness structure will suffice, as often
only small amplitude vibrations are encountered. In
fact, quasi-zero-stiffness structures may even be pref-
erable for vibration isolation, as they can combine a
high overall static stiffness with a low dynamic

(a)

(b)

Figure 8. A compliant mechanism with zero stiffness can be obtained by combining the positive and negative stiffness of two elastic

structures. In (a-i) are shown two coupled Von Mises trusses1 in their unstressed configuration; the bars are elastic and the Euler load

is assumed sufficiently large to avoid buckling. Due to their differing rise �, the two arches will snap through at different displacements

d during the preloading. The configuration considered here has �1 ¼ 10
�

, �2 ¼ 19:4
�

and beam thickness t2 ¼ 0:52 � t1 (to ensure that

the opposing stiffness of the two structures is equal at the zero-stiffness point). In (b) is shown the force–displacement profile of the

two arches. Around d=h ¼ 2 the positive stiffness of arch 1 and negative stiffness of the postbuckled arch 2 add up to produce zero

stiffness over a limited working range; see (a-ii) for the zero-stiffness configuration. Note that this quasi-zero-stiffness point is

ultimately unstable.

1708 Proc IMechE Part C: J Mechanical Engineering Science 228(10)

 at CAMBRIDGE UNIV LIBRARY on April 23, 2015pic.sagepub.comDownloaded from 



stiffness around the quasi-zero-stiffness configur-
ation.19,39 Nonetheless, applications for large-displa-
cement vibration isolation systems exist, including the
Steadicam,21 and accurate gravity measurement
devices.23

Example: Zero stiffness four ways

To illustrate the equivalence of the different interpret-
ations of zero stiffness, this section details the mech-
anics of the classic spring-to-spring balancer shown in
Figure 9. We extend an earlier analysis by Herder32

and describe the spring-to-spring balancer in terms of
(i) continuous equilibrium, (ii) constant potential
energy, (iii) neutral stability and (iv) zero stiffness.
Each method will be used to derive the combined geo-
metric and stiffness conditions for zero stiffness (the
level of prestress is implied by the use of zero-
free-length springs), and each method provides differ-
ent insights into the mechanics of the structure.

Continuous equilibrium

For a spring-to-spring balancer with zero-free-length
springs, the spring forces acting on the connecting link
are straightforwardly resolved into a horizontal com-
ponent and a component parallel to the direction of
the link, see Figure 10.

Fk ¼ k1r1 þ k2r2 ð1Þ

F1,hor ¼ a1k1 ð2Þ

F2,hor ¼ a2k2 ð3Þ

By virtue of using zero-free-length springs, these
forces are independent of the link angle ’. The

moment equilibrium around the bottom pivot is
given by

a1k1r1 sin ’ ¼ a2k2r2 sin ’ ð4Þ

and will hold, for any value of ’, if the relationship

a1k1r1 ¼ a2k2r2 ð5Þ

is satisfied. This is the zero-stiffness condition for the
spring-to-spring balancer which describes the required
relationship between the geometry and stiffness par-
ameters of the structure, the level of prestress is impli-
cit in the use of zero-free-length springs.

Constant potential energy

The total potential energy U in the spring-to-spring
balancer depends solely on the elongation of the
springs. Using the cosine rule to calculate the spring
lengths, the energy stored in the zero-free-length
springs is given by

U ¼
1

2
k1 a21 þ r21 � 2a1r1 cos �� ’ð Þ
� �

þ
1

2
k2 a22 þ r22 � 2a2r2 cos’
� �

¼
1

2
k1 a21 þ r21
� �

þ
1

2
k2 a22 þ r22
� �

� a1r1 cos �� ’ð Þ � a2r2 cos ’

¼ Cþ a1r1k1 cos ’� a2r2k2 cos ’

which will be constant for any value of ’ if the fol-
lowing equality holds:

a1k1r1 ¼ a2k2r2

Figure 9. The basic spring-to-spring balancer consists of a

rigid link connected to two zero-free-length springs.32 The

geometric parameters are a1, a2, r1, r2, with spring stiffnesses

k1, k2; note that the attachment points at the base are collinear.

The zero-stiffness condition a1k1r1 ¼ a2k2r2 will be derived in

this section.

Figure 10. The forces of the zero-free-length springs can be

decomposed into their horizontal components and compo-

nents parallel to the rigid link. Note that these forces are

independent of the link angle ’.
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For the special case where k1 ¼ k2 ¼ k and
a1 ¼ a2 ¼ r1 ¼ r2 ¼ R, the constant energy solution
is elegantly demonstrated geometrically using
Thales’ theorem, as shown in Figure 11.

Neutral stability

Here we consider the basic balancer as a column
loaded under a compressive load P, with a zero-
free-length spring providing a restoring force, see
Figure 12. For the axially loaded column with zero-
free-length spring, the potential energy function � is
given by

� ¼
1

2
k r2 þ a2 � 2ar cos ’
� �

� Pu

¼
1

2
k r2 þ a2 � 2ar cos ’
� �

� PL 1� cos ’ð Þ

ð6Þ

For equilibrium @�=@’ ¼ 0, and thus

@�

@’
¼ sin ’ akr� PLð Þ ¼ 0 ð7Þ

which will hold for ’ ¼ 0, as well as for the critical
buckling load

Pcr ¼
akr

L
ð8Þ

The second derivative determines the stability of
the solution

@2�

@’2
¼ cos’ Pcr � Pð ÞL ð9Þ

and will be zero for any angle ’ at the critical buckling
load. It is easy to verify that all higher order

derivatives of the potential function � will be zero
at the buckling load, and thus the structure is neu-
trally stable for any position under the critical buck-
ling load Pcr. In effect, this becomes a constant force
generator, and can be used to counterbalance a
mass.38 Two such structures can be coupled to form
the statically balanced spring-to-spring balancer, as
long as they share an equal critical load. Using equa-
tion (8) this requirement again yields the balancing
condition a1k1r1 ¼ a2k2r2 for the system shown in
Figure 9.

Zero stiffness

Here the spring-to-spring balancer is modelled as
a prestressed pin-jointed truss, where r1 ¼ r2 ¼ r,
see Figure 13. The tangent stiffness matrix Kt can

Figure 11. For a spring-to-spring balancer with k1 ¼ k2 ¼ k and a1 ¼ a2 ¼ r1 ¼ r2 ¼ R the constant potential energy can be

illustrated elegantly with Thales’ theorem: if A, B and C are points on a circle where the line AC is a diameter of the circle, then the

angle ffABC is a right angle. Using Pythagoras’ theorem it is then evident that the total spring energy in the system will be constant for

any angle ’ of the rigid link.

Figure 12. A column is loaded under a compressive axial load

P, with a zero-free-length spring providing a restoring force.

This will result in a neutrally stable postbuckling configuration

at the critical buckling load Pcr (right).
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then be constructed according to the derivation by
Guest,68 which takes into account prestressing of the
members. The first component is the equilibrium
matrix A, which relates the internal tensions t to the
external forces f

At ¼ f ð10Þ

and is here given by

A ¼

a1 þ r cos’

l1
�
a2 � r cos ’

l2
cos ’

r sin ’

l1

r sin ’

l2
sin ’

2
664

3
775 ð11Þ

with l1 and l2 the lengths of the respective springs.
As the structure is statically indeterminate, the null-
space of A provides the state of self-stress t0

t0 ¼

a2l1
a1l2

�rða1 þ a2Þ

2
4

3
5 ð12Þ

When using zero-free-length springs with k1 and k2,
the zero-stiffness condition a1k1 ¼ a2k2 follows dir-
ectly from this state of self-stress. The specific self-
stress t thus becomes

t ¼

l1k1
l2k2

�rðk1 þ k2Þ

2
4

3
5 ð13Þ

A modified axial stiffness ĝ is formulated for each
of the members, taking into account the prestress:

ĝ ¼ g�
t

l
ð14Þ

where g is the axial stiffness of the member. For zero-
free-length springs this modified axial stiffness will be
zero,60 and the diagonal matrix bG becomes

bG ¼ 0 0 0
0 0 0
0 0 k1 þ k2 þ

EA
r

� �
2
4

3
5 ð15Þ

The modified material stiffness matrix bK is given as

bK ¼ AbGAT
ð16Þ

which results in

bK ¼ k1 þ k2 þ
EA

r

� �
cos2 ’ cos ’ sin ’

cos ’ sin’ sin2 ’

� 	
ð17Þ

The tangent stiffness matrix Kt requires a further
component, the stress matrix S, to represent the stiff-
ness due to the reorientation of the prestressed
members.

Kt ¼ bKþ S ð18Þ

The total stress matrix S is composed of the stress
matrices Si for the individual members

Si ¼
ti
li

I �I

�I I

� 	
ð19Þ

where I is the identity matrix. After removing the
appropriate rows and columns for constrained
nodes, the combined stress matrix for the spring-
to-spring balancer becomes

S ¼
0 0
0 0

� 	
ð20Þ

and the tangent stiffness matrix Kt is thus equal to
equation (17). The tangent stiffness matrix has a null-
ity of one, and the nullspace has a basis vector

v ¼
tan ’
�1

� 	
ð21Þ

This basis describes the infinitesimal zero-stiffness
displacement mode. It exists for every configuration ’,
and is always orthogonal to the rigid link (with unit
vector r):

r � v ¼ cos ’ sin ’
� � tan’

�1

� 	
¼ 0 ð22Þ

The stiffness analysis shows that for any configura-
tion ’ of the spring-to-spring balancer there exists an
infinitesimal zero-stiffness mode which is orthogonal
to the rigid link, the infinitesimal modes are thus
connected in a finite zero-stiffness path. The

Figure 13. The spring-to-spring balancer with r1 ¼ r2 ¼ r can

be modelled as a pin-jointed truss with two degrees of free-

dom, dx and dy .
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geometric-stiffness balancing condition for the spring-
to-spring balancer was here derived from the state of
self-stress of the structure. While more elaborate than
the previous methods in describing this example struc-
ture, the stiffness matrix approach has proven to be
powerful in analysing more complex zero-stiffness
structures.60

It is interesting to consider the parallel of this
example to a cable-stayed mast, where the tension in
the guy ropes is increased. Intuitively, an increase in
pretension would serve to stabilise the mast, and while
it is true that this will help prevent cable slackening
under load, actually the horizontal stiffness of the
system decreases as tension is increased. To reach
the critical level of prestress required for zero stiffness
will, however, require specially constructed stays and
mast.

Discussion and conclusions

This paper has focused on the surprising and fascinat-
ing phenomenon that certain structures can deform
elastically without external work. These singular
structures are said to have zero stiffness, and their
remarkable behaviour relies on a specific combination
of geometry, stiffness and prestress.

Several equivalent descriptions for these structures
exist, and examples from the literature have been dis-
cussed in terms of the following interpretations: (i)
continuous equilibrium, (ii) constant potential
energy, (iii) neutral stability and (iv) zero stiffness.
Each interpretation can yield alternative insights,
and provide different methods of design and analysis.
By rephrasing examples from the literature in different
interpretations, disparate examples can be united by
the same underlying principle. In cases where this is
not straightforward – for example, the Thomson and
Tait twisting ring is not easily interpreted as a neu-
trally stable buckling solution – the most general
description is that of zero stiffness, which covers all
examples presented in this review.

The design of zero-stiffness structures, that is, find-
ing the appropriate combination of geometry, stiffness
and prestress, remains a specialised field. We hope
that the present review will provide new insights
and serve as a source of inspiration for the develop-
ment of new and exciting examples of zero-stiffness
structures.
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